4,853 research outputs found

    Description of a computer simulation of an orbital SAR system

    Get PDF
    In order to predict the performance of a synthetic aperture radar for a wide variety of system and environmental parameters a computer simulation of the SAR system was developed. This model is a detailed description of the SAR imaging process on a pulse-by-pulse basis. The simulation is implemented as seven computer programs for a CDC Cyber 171 digital computer

    Renormalized parameters and perturbation theory for an n-channel Anderson model with Hund's rule coupling: Asymmetric case

    Full text link
    We explore the predictions of the renormalized perturbation theory for an n-channel Anderson model, both with and without Hund's rule coupling, in the regime away from particle-hole symmetry. For the model with n=2 we deduce the renormalized parameters from numerical renormalization group calculations, and plot them as a function of the occupation at the impurity site, nd. From these we deduce the spin, orbital and charge susceptibilities, Wilson ratios and quasiparticle density of states at T=0, in the different parameter regimes, which gives a comprehensive overview of the low energy behavior of the model. We compare the difference in Kondo behaviors at the points where nd=1 and nd=2. One unexpected feature of the results is the suppression of the charge susceptibility in the strong correlation regime over the occupation number range 1 <nd <3.Comment: 9 pages, 17 figure

    Fermi Liquids and the Luttinger Integral

    Get PDF
    The Luttinger Theorem, which relates the electron density to the volume of the Fermi surface in an itinerant electron system, is taken to be one of the essential features of a Fermi liquid. The microscopic derivation of this result depends on the vanishing of a certain integral, the Luttinger integral ILI_{\rm L}, which is also the basis of the Friedel sum rule for impurity models, relating the impurity occupation number to the scattering phase shift of the conduction electrons. It is known that non-zero values of ILI_{\rm L} with IL=±π/2I_{\rm L}=\pm\pi/2, occur in impurity models in phases with non-analytic low energy scattering, classified as singular Fermi liquids. Here we show the same values, IL=±π/2I_{\rm L}=\pm\pi/2, occur in an impurity model in phases with regular low energy Fermi liquid behavior. Consequently the Luttinger integral can be taken to characterize these phases, and the quantum critical points separating them interpreted as topological.Comment: 5 pages 7 figure

    The Multirate Simulation of FACTS Devices in Power System Dynamics

    Get PDF
    In this paper, the multirate method is applied to the problem of simulating the dynamics of a power system which contains fast components such as induction machine loads and FACTS devices. Results concerning the numerical stability and accuracy of the multirate method are presented. Implementation concerns are also addressed by studying an example power system which contains a wide range of time response behavio
    • …
    corecore